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MICROMACHINED OPTICAL
DEVICES EXAMPLES

• Photosensors/Imagers (IR, visible, UV)

• Spectrophotometers

• Light emitters

• Optical modulators

• Fiber optic interfaces
• Lenses and other optical components

• Other
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BASIC OPTICAL TRANSDUCER CONCEPTS

• Electron/hole pair generation in depletion regions of
semiconductor junctions generates voltages/currents.

• In photoconductors, but bulk resistance drops due to extra
photogenerated carriers.

• Indirect conversion of photons may be used, such as conversion to
heat (can measure temperature) or to gas expansion (via heat) as in
the Golay cell.

• Photoemission (photons directly releasing electrons from emissive
surfaces) can also be used (e.g. photomultipliers), but has not been
applied in micromachined devices yet.

• For light emission, lasers, light-emitting diodes (recombination),
electroluminescence or incandescence may be used.
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BASIC PHOTOSENSOR CONCEPTS
• There are four basic types of photosensors:

– photoemissive (electron released from metal by sufficiently energetic photon)

– bulk photoconductive (no junction - photogenerated carriers lower bulk resistance)

– junction (electron-hole pairs generated in depletion region, can be used as photovoltaics
or photoconductors)

– indirect (conversion of optical to another form of energy that is then sensed)

• The first three are “direct” and the last type is “indirect.”

• Direct photosensors use some or all of the three basic processes that
contribute to their final gain:

– carrier generation by photons

– carrier transport and/or multiplication

– interaction with external circuit

• The final gain of indirect photosensors is more case specific.
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KEY PHOTOSENSOR SPECIFICATIONS
• Quantum Efficiency ( ):  number of carriers generated per photon.

• Responsivity (RV or RI):  ratio of output voltage (or current) to the optical
input power (V/W or A/W).

• Noise Equivalent Power (NEP):  amount of light required to yield a signal
just equal to the noise floor = noise voltage (V/ Hz)/responsivity (similarly
for current)

• Detectivity (D*):  ( A B)/NEP, which takes into account detector area and
bandwidth (noise current is proportional to the square root of A and of B).
It can be looked at as a signal-to-noise ratio corrected for these effects.
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EXAMPLE
DETECTIVITIES AND

QUANTUM
EFFICIENCIES
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LIGHT ABSORPTION

• A photon flux absorbed into a material falls off
exponentially as,

• The absorption coefficient, , is characteristic of
each material and is often a strong function of the
wavelength.

• Consideration of this effect in the design of
photosensors is critical.

Φ(x) =  Φo e −αx
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DIRECT
OPTICAL
SENSORS
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Device Type Gain Response Time (s) Typical 
Operating 

Temperature

Photomultiplier > 106 10-7 to 10 -9 300 (sometimes 
cooled)

Photoconductor 1 to 106 10-3 to 10 -8 4.2 to 300

Metal-Semiconductor-Metal 
Photodetector

1 or less 10-10 to 10 -12 300

p-n Photodiode 1 or less 10-6 to 10 -11 300 (sometimes 
cooled to 77K)

p-i-n  Photodiode 1 or less 10-6 to 10 -9 300

Metal-Semiconductor Diode 1 or less 10-9 to 10 -12 300

Avalanche Diode 102 to 104 10-10 300

Bipolar Phototransistor 102 10-6 to 10 -8 300

Bipolar PhotoDarlington 104 10-5 to 10 -6 300

Field-Effect Phototransistor 10 10-7 300

CCD Cell (Metal-Insulator- 
Semiconductor Capacitor)

1 or less 10-5 to 10 -8 300 (sometimes 
cooled)
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PHOTOEMISSIVE DEVICES
• Photons at wavelengths shorter than the

cutoff for the photocathode material
release electrons due to elastic collisions.

• Multiple secondary low-work-function
cathodes (“dynodes”) are used to
provide gain.

• Can obtain single-photon sensitivity and
nanosecond time speed.

• Dark current (thermionic, not photonic
emission) is the major limiting factor,
and is amplified by the dynodes.

• They are used for night vision, nuclear
physics, etc.
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IMAGE INTENSIFIERS



G. Kovacs © 2000

PHOTOCONDUCTORS
• Photocurrent gain defines the number of carriers

than can flow for each photogenerated carrier
before it recombines.

• Long-lived carriers contribute more to a change in
conductivity.

• If carriers are not swept out of the photoconductor
quickly, they can contribute longer.

• Photocurrent gain is simply the carrier lifetime
divided by the transit time.

• Short transit paths, high mobilities and long
carrier lifetimes contribute greatly to increased
gain.

• Photoconductors can be 1,000X more sensitive
than photovoltaics and up to 1,000,000X more
sensitive than simple photoemissive devices.

• The CdS cell is a classic design (with tremendous
sensitivity), and CdS can be applied to silicon
devices.
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CdSe SENSOR
ARRAY

• Glass substrate used with
separate amplifier array
to realize a fax machine
scanner.

• TiW electrodes used for
contacts (etched with
peroxide).

• Evaporated CdSe
deposited and HCl etched.

• CdSe “activated” (doped)
using CdS/CdCl2/Cu)
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TYPES OF PHOTOJUNCTION DEVICES

• Photodiodes - simple.

• Avalanche diodes - inherent gain, very fast (100 GHz
possible), noisy, high voltage.

• PIN diodes - common, wide depletion region, fast.

• Phototransistors - simple, common.

• PhotoDarlingtons - higher gain, lower speed.

• PhotoFETs - not common.

• Others...
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PHOTOJUNCTION DEVICES
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TYPICAL PHOTODIODES
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TYPICAL PHOTODIODES
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INTEGRATED PHOTODETECTORS
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BRIEF SUMMARY OF PHOTOJUNCTION
DEVICE ISSUES

• WIDE DEPLETION REGION
– HIGHER quantum efficiency ( ) since more likely to get photon interactions....

– LOWER junction capacitance, Cj

– LONGER transit time, tr -> slows response, but high reverse bias helps (you normally use
photodiodes in reverse bias and end up with high speed operation)!

• NARROW DEPLETION REGION
– LOWER h
– LARGER Cj

– SHORTER  tr -> helps speed response, but capacitance may dominate

• BOTTOM LINE:  speed is determined by three factors:
– 1) diffusion of carriers generated outside the depletion region into it (reduced by making

the depletion region close to the surface)
– 2) drift time in the diffusion region (reduced by making it only wide enough to absorb

maximally but not too thin so that capacitance goes up)
– 3) junction capacitance (reduced by strong reverse bias or intrinsic region).
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PHOTOSENSORS IN CMOS

• Readily achievable, but need Vt insensitive designs!
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Reference:  Ricquier, N., and Dierickx, B., “Random Addressable CMOS Image Sensor for Industrial Applications,” Sensors
and Actuators, vol. A44, no. 1, July 1994, pp. 29 - 35.
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CCD STRUCTURES

• CCDs are members of the metal-insulator-semiconductor (MIS) class of
photodetectors.

• Bias applied to electrode above dielectric causes inversion in substrate so that
photogenerated electron hole pairs are separated.

• Multiple electrodes can be used to move charge packets along by changing
the applied potentials.

• Can be very sensitive (single photon) and huge arrays can be fabricated.
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Courtesy of Kodak, Inc., Rochester, NY.
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HgCdTe FOCAL PLANE HYBRID

Courtesy of Texas Instruments, Inc., Dallas, TX.
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MICROMACHINED SOLAR CELLS

• Solar cells actually seldom
pay back the energy
required to make them
(typically 8 - 10 years!).

• Micromachined versions
can be made much more
efficient than conventional
designs by trapping more
photons.

• Sunpower, Inc.,
manufactures such devices.

Metallization

Light

Pyramidal Pits

p+
p+

n+ Silicon
Dioxide

Silicon Substrate



G. Kovacs © 2000
Courtesy Sunpower, Inc.



G. Kovacs © 2000

PYROELECTRIC DETECTORS

• These devices can be very sensitive to temperature, but have no DC
response (light must be chopped...  they behave like capacitors with
charge generated by photons).

• Want high ratio of pyroelectric to dielectric constant for speed.
• They generally have quite flat responses.

Example materials:  barium
titanate, triglycine sulfate,
polyvinyl fluoride, lithium
tantalate, zinc oxide, etc.

Incident
Light   Det.

Motor

         AC
      Amplifier

Phase-
Sensitive
Detector

Black, temperature = To

Light
Det.ector

Output Signal



G. Kovacs © 2000

ZnO ON MOS
(POLLA)

• Polla used RF-magnetron
sputtered ZnO (<250°C)
directly above NMOS.

• ZnO easily etched with
acetic:phosphoric:water
(1:1:30).

• These chips included IR
sensors, anemometers,
chemical reaction sensor
(calorimeters), etc.
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Reference:  Polla, D. L., Muller, R. S., and White,
R. M., “Integrated Multisensor Chip,” IEEE
Electron Device Letters, vol. EDL-7, no. 4, Apr.
1986, pp. 254 - 256.
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ELECTRICALLY POLED PVDF
• PVDF requires poling in an electric

field to orient dipoles in the film.
• Asahi, et al., demonstrated an electro-

spray method wherein the PVDF was
poled as it was deposited.

• The process is MOS compatible and
the PVDF can be O2 etched.

Reference:  Asahi, R., Sakata, J., Tabata, O.,
Mochizuki, M., Sugiyama, S., and Taga, Y.,
“Integrated Pyroelectric Infrared Sensor Using
PVDF Thin-Film Deposited by Electro-Spray
Method,” Proceedings of Transducers ‘93, the
7th International Conference on Solid-State
Sensors and Actuators, Yokohama, Japan,
June 7 - 10, 1993, Institute of Electrical
Engineers, Japan, pp. 656 - 659.
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BOLOMETERS

• Thermally sensitive resistors are used as temperature (and hence light)
sensors.

• Like pyroelectrics, they have a flat response.

• Bolometers have a DC response (no need for chopper).

• Micromachined examples include Honeywell IR imagers (vanadium oxide
thin-film sensors).
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Source:  Wood, R. A., Han, C. J., and Kruse, P. W., “Integrated Uncooled Infrared Detector Imaging Arrays,”  Proceedings of the 1992 Solid-
State Sensor and Actuator Workshop, Hilton Head Island, SC, June 22 - 25, 1992, pp. 132 - 135.
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THERMOPILES
• Thermopiles directly

generate electrical signals
through the Seebeck effect.

• They have flat wavelength
sensitivities and DC
responses.

• They can readily be
fabricated as junctions
between thin-films with
different thermoelectric
powers, such as aluminum
and polysilicon (already
available in CMOS
processes).
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MICROMACHINED THERMOPILES

• Choi and Wise made micromachined arrays of thermopiles on an
oxide/nitride membrane.

• Absorptivity at hot junctions maximized using bismuth black.

• Thermal conductivity of thin films and diaphragm should be minimized.

• Many thermocouples in series = thermopile, but as numbers increase, so
does noise.
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Source:  Choi, I. H., and Wise, K. D., “A Silicon-Thermopile-Based Infrared
Sensing Array for Use in Automated Manufacturing,” IEEE Transactions on
Electron Devices, vol. ED-33, no. 1, Jan. 1986, pp. 72 - 79.
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GOLAY CELLS

• Golay cells have flat wavelength responses and high sensitivity.

• Despite potential DC responses, they are typically used with choppers to
minimize ambient temperature effects.

• Impinging light is converted to heat that expands gas trapped beneath a
membrane.

• Optical or other methods are used to detect deflection of the membrane.

Pneumatic
Chamber

Window

Absorbing
Film

Leak
Port

Ballasting
Reservoir

Flexible
Mirror Grating

Mirror and Lens Block

To Amplifier

Photosensor

Light
source



G. Kovacs © 2000

TUNNELING GOLAY CELL

• Robust tunneling tip with
electrostatic feedback.

• Gas expansion force
measured.

• Fabricated as adhesive
bonded three-wafer stack,
bulk micromachined.

• Vented pneumatic
chamber blocks DC
response and pressure
sensitivity.
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Courtesy Prof. T. Kenny, Stanford University.

Reference:  Kenny, T. W., Kaiser, W. J., Waltman, S. B., and
Reynolds, J. K., “Novel Infrared Detector Based on a Tunneling
Displacement Transducer,” Applied Physics Letters, vol. 59, no.
19, Oct. 7, 1991, pp. 1820-1822.



G. Kovacs © 2000

Courtesy Prof. T. Kenny, Stanford University.
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BIOLOGICAL
PHOTOSENSORS

Rods Cones

More photopigment Less photopigment

Slow response:  long integration time
(can detect flickering light up to 12 Hz)

Fast response:  short integration time
(can detect flickering light up to 55 Hz)

High amplification:  single quantum detection Probably less amplification

Saturating response Nonsaturating response
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Highly convergent retinal pathways Less convergent retinal pathways
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Achromatic:  one type of pigment Polychromatic:  three types of pigment
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Source:  Darnell, J., Lodish, H., and Baltimore, D.,
“Molecular Cell Biology,” Second Edition, Scientific
American Books, W. H. Freeman and Co., New
York, NY, 1991.
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CHEMISTRY OF
VISION

• Photons change cis- to trans-retinal, and a second messenger
mechanism (cyclic GMP) keeps sodium channels open in membranes
-> a GAIN stage!

• Three types of cones provide color vision.
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LIGHT EMITTERS

• Light emitting diodes (LEDs)

• Diode lasers
• Organic LEDs

• Incandescent devices
• Plasma sources

• Electroluminescent sources
• Field emitters

• Bioluminescence
• Other...
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LIGHT EMITTING DIODES
• When a forward bias is applied

to an LED, electrons acquire
enough energy to cross from
the n+ through the depletion
region to recombine in the p+
region (similar for holes
leaving the valence band).

• Photons are emitted with no
phase relationship to each
other (incoherent).

• Very bright LEDs are now
commonplace (>3 cd).

• Direct bandgap, large quantum
efficiency (>80%).

Typical materials:  GaP,
GaAs, GaAsP, SiC, etc.

p+n+

Large Numbers of
Electrons

Large Numbers of
Holes

hν
Transitions on the n+
side are non-radiative.

Electron Injection
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SILICON CARBIDE

Courtesy Cree, Inc.
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1992
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LOW-COST SOLID-
STATE LASERS
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HIGH-POWER LASER DIODES

1 cm
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ORGANIC LEDS
• Poly(ethylene terephthalate) substrate

+ polyaniline anode + substituted
poly(1,4-phenylene-vinylene) emitting
layer + calcium metal cathode
(electron source).

• LED output from devices reported by
UNIAX Corp. visible in normal
lighting, quantum efficiency  1%.

• Completed devices are flexible.

• Multiple colors are possible.

MEHPPV

Ca
Ca

P E T

Emitted Light

Reference:  Gustafsson, G., Cao, Y., Treacy, G. M., Klavetter,
F., Colaneri, N., and Heeger, A. J., “Flexible Light-Emitting
Diodes Made from Soluble Organic Polymers,” Nature, vol.
357, June 11, 1992, pp. 477 - 479.

Image courtesy UNIAX Corp.
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MICROMACHINED INCANDESCENT LAMPS
• Reactive sealed 2.5

µm nitride window
with internal
vacuum.

• Filaments up to 500
µm long, 5 X 1 µm
cross section.

• Broadband IR
emission, 5 mW
demonstrated.

(100) p-Type Silicon Substrate

Nitride PSG p+ Poly-Si Filament
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Nitride Window

Anchor

Etched Cavity

Sealed Channel

Sealed Cavity

Nitride
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5

1

6

43

2
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Reference:  Mastrangelo, C. H. and Muller, R. S., “Vacuum-Sealed Silicon
Micromachined Incandescent Light Source,” Proceedings of the IEDM,
1989, pp. 503 - 506.
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Source:  Mastrangelo, C. H. and Muller, R. S., “Vacuum-Sealed Silicon
Micromachined Incandescent Light Source,” Proceedings of the IEDM,
1989, pp. 503 - 506.
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FIELD EMISSION DISPLAYS

• LCDs use 80-90% of their power for backlighting, yet only 4% of the
light reaches the viewer.

• FEDs provide electron flux to directly illuminate phosphors (107 V/cm
easy to generate), with no focusing required due to short gap.

• Should be at least 2X more efficient than LCDs, hence the big push to
develop them.
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BIOLUMINESCENCE

Movie courtesy Prof. H. C. Heller, Stanford University.

Source:  Purves, Orians, Heller, and Sadava, “Life:  The Science of Biology,” Sinauer Associates/W.H. Freeman & Co., New York, 1999.
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LIGHT MODULATORS

• Liquid crystals

• Mechanical modulators

• Other?
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LIQUID CRYSTAL DISPLAYS

• Nematic LCDs have a polarizer of buffed glass and ITO coating, a thin
layer of LC (  10 µm), an inner polarizer of buffed glass, and a rear
reflector (or nothing if transmissive).

• LC molecules continuously twist between the buffing orientations and, if
“off,” allow light to follow the twist and pass back-to-front (electrical drive
orients the LC orthogonal to the glass and destroys this effect for a blacked
out region).

Typical drive:  AC squarewave,
3 - 10V PP

Typical speed:  10 - 100 ms

Molecular size:  2nm X 0.5nm
diameter

Polarizers

Liquid
Crystal

Molecules

Reflector

Light

FIELD OFF FIELD ON
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LIQUID
CRYSTAL
DISPLAYS
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MICROMECHANICAL
LIGHT MODULATORS

Modulator
Type Motion Side and Top Views

Cantilever Beam Bending

Torsional Plate Rotation About
Torsion Axis

Membrane Drumhead

Suspended Plate Vertical

Axis of
Rotation
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WESTINGHOUSE
LIGHT

MODULATOR

• An electron-beam deflected
micromechanical light modulator was
developed by Westinghouse in the mid-
1970s.

• Al-coated SiO2 “flaps” supported by
epitaxial silicon posts on sapphire
substrates were sealed into a vacuum tube
with a CRT-like electron beam.

• Deflection of up to 4° occurred since more
secondary electrons were knocked off than
the impinging electrons.

• Output viewed through Schlieren optics.

• Images could be refreshed or stored for
hours.

• Interestingly, the Al stress was controlled
by adjusting the background O2 level
during evaporation.

50 µm

Sapphire

Epitaxial
Silicon Post

Aluminum-Coated
SiO2 Membranes
(400 nm thick)5 µmAluminum

Grid

Reference:  Thomas, R. N., Guldberg, J., Nathanson, H. C., and
Malmberg, P. R., “The Mirror-Matrix Tube:  A Novel Light Valve
for Projection Displays,” IEEE Transactions on Electron Devices, vol.
ED-22, no. 9, Sept. 1975, pp. 765 - 775.
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• Several mechanical optical modulators were developed at IBM for
computer display applications.

p - Si

Etched Well

(side)

(top)
Metal-Coated SiO2 Membrane

<110>

Metal-Coated
SiO2 [100]

p - Si

p - Si d

t
p++ Si

Laser

Beam Forming
Optics

Aperture

Galvanometer
(40 Hz)

Ground Glass
Screen

Light Modulator
Array

Reference:  Petersen, K. E., “Micromechanical Light Modulator Array Fabricated on Silicon,” Applied Physics Letters, vol. 31,
no. 8, Oct. 1977, pp. 521 - 523.
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TORSIONAL LIGHT MODULATORS

• Texas Instruments has been
developing micromechanical
optical modulators for over
a decade.

• Sacrificial photoresist is
used as a spacer, and
underlying circuits are
derived from a DRAM
process.

• Very thin ( 60 nm) Al
torsional members are used
and have survived 1 trillion
cycles.

Silicon Substrate with
CMOS Circuitry

+- Actuation
Voltage

Mirror

Torsional
Hinge

Landing
ElectrodeDeflection

Electrode

Incident
Light
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Images courtesy Texas Instruments, Inc.
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Yoke
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Silicon Substrate

Grating Down: Diffraction

λ/4
Silicon Substrate

Grating Up:  Reflection

λ/2

Aluminum
Mirror Surface

(200 nm)

Silicon

Silicon Nitride
Membrane
(0.5 µm)
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Springs

RIE Etched
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Silicon
Mirror Surface
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External Magnetic
Field
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Clockwise: A) Unassembled “pop-up” corner-cube reflector.
B) CCR after assembly.  This CCR is not actuated.  The
assembly was accomplished in a single flipping step, using
tweezers provided by MEMS Precision Instruments.  C) A
similar but not identical CCR structure is shown in the 
partially-assembled state.

Designed in the Sandia SUMMiT 4-level process
Elliot Hui, 7/22/99

Courtesy E. Hui, U. C. Berkeley.
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24-BIT LOCK

http://www.mdl.sandia.gov/Micromachine/images.html
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MICROMACHINED OPTICAL
STRUCTURES AND SYSTEMS

• Optical surfaces
• Lenses

• Waveguides

• Optical Switches

• Interferometers

• Variable filters
• Optical “benches”

• Integration with CMOS
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FIBER-OPTIC SWITCH

Reference:  H. Guckel, K.Fischer, B.Chaudhuri, E.Stiers, S.McNamara,
"Single Mode Optical Fiber Switch,"  HARMST’99, Tokyo, Japan, June 1999.

Courtesy Prof. H. Guckel, University of Wisconsin.
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MICROMACHINED “OPTICAL BENCH”

Laser

Mirror

Fresnel
Zone Plate

Substrate

Source (Image):  Lee, S. S., Lin., L. Y., and Wu, M. C., “Surface-Micromachined Free-Space Micro-Optical Systems Containing Three-
Dimensional Microgratings,” Applied Physics Letters, vol. 67, no. 15, Oct. 9, 1995, pp. 2135 - 2137.
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MICROMOTOR SCANNED GRATINGS

Courtesy Prof. M. Mehregany, Case Western Reserve University.
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SPECTROPHOTOMETERS

• Several groups are
working on
micromachined
spectrophotometers.

• Tunable Fabry-Perot
interferometers are
being developed.

• Computed-gratings
spectrophotometers
have been
demonstrated.Reference:  Jerman, J. H., Clift, D. J., and Mallinson, S. R., “A Miniature Fabry-Perot

Interferometer with a Corrugated Silicon Diaphragm Support,” Sensors and Actuators A, vol.
29, 1991, pp. 151 - 158.
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TUNABLE SLIT FILTER

Pull To
Increase
Cut-Off

Wavelength

Plates

Flexures

d

Source:  Ohnstein, T. R., Zook, J. D., Cox, J. A., Speldrich, B. D., Wagener, T. J.,
Guckel, H., Christenson, T. R., Klein, J., Earles, T., and Glasgow, I., “Tunable IR
Filters Using Flexible Metallic Microstructures,” Proceedings of the IEEE Micro
Electro Mechanical Systems Conference, Amsterdam, Netherlands, Jan. 29 - Feb. 2,
1995, pp. 170 - 174.
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GRATING SPECTROMETER
OPERATION

• Light disperses
according to its
wavelength.

• Fine grating pitch of 0.8
µm allows for short
projection distance of
~1cm.

• Micromachining is used
to create the gratings.Increasing Wavelength

Photodetector
Array

Incident Light

Diffraction Grating

Chip Window

Quartz Wafer
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GRATING FABRICATION

• Blazed gratings are more
efficient than binary.

• Feasible to approximate
blaze in a series of mask
steps.

• Quartz wafers are exposed
using an electron beam
system.  A chromium layer
acts as a mask for the
successive RIE etching.

Linear Blazed Phase Grating

Binary Phase Grating

Amplitude Grating

Incident Light
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LOW-COST SPECTROMETER SYSTEM

Lens

Micromachined
Grating

CCD Imager

Incoming
Light

Courtesy G. Yee, Stanford University.
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LOW-COST SYSTEM RESPONSE
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Courtesy G. Yee, Stanford University.


